Exercise 4

The length of a rectangle is increasing at a rate of $8 \mathrm{~cm} / \mathrm{s}$ and its width is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$. When the length is 20 cm and the width is 10 cm , how fast is the area of the rectangle increasing?

Solution

The area of a rectangle is its length l times its width w.

$$
A=l w
$$

Differentiate both sides with respect to t, using the product rule on the right side.

$$
\begin{gathered}
\frac{d}{d t}(A)=\frac{d}{d t}(l w) \\
\frac{d A}{d t}=\frac{d l}{d t} w+l \frac{d w}{d t}
\end{gathered}
$$

The length is increasing by 8 centimeters per second, so $d l / d t=8 \mathrm{~cm} / \mathrm{s}$. The width is increasing by 3 centimeters per second, so $d w / d t=3 \mathrm{~cm} / \mathrm{s}$. Therefore, when the length is 20 cm and the width is 10 cm , the rate that area is increasing is

$$
\left.\frac{d A}{d t}\right|_{\substack{l=20 \\ w=10}}=(8)(10)+(20)(3)=140 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} .
$$

